Chem. Ber. 115, 3565 - 3579 (1982)

Siebenfach koordinierte Carbonylkomplexe des Molybdäns und Wolframs, II¹⁾

Die Komplexe MHal₂(CO)₃L₂ und MHal₂(CO)₂L₃

Peter Umland und Heinrich Vahrenkamp *

Institut für Anorganische Chemie der Universität Freiburg, Albertstr. 21, D-7800 Freiburg

Eingegangen am 1. März 1982

Die Komplexe WHal₂(CO)₄L (3-5, Hal = I, Br, Cl; L = PMe₃, AsMe₃, SbMe₃) unterliegen sehr leicht einer CO-Substitution. Dadurch lassen sich aus ihnen die Komplexe WHal₂(CO)₃LL' (7-13, 24, L' = PMe₃, AsMe₃, SbMe₃, AsMe₂H, P(OMe)₃, PPh₃, Py, I) darstellen. Verbindungen dieses Typs sind auch aus [WHal₂(CO)₄]₂ mit PMe₃, AsMe₃ und SbMe₃ sowie aus Mo(CO)₆ bzw. W(CO)₆ mit AsMe₃Hal₂ zugänglich. Folgereaktionen solcher Umsetzungen sind die Abspaltung von CO sowie weitere Substitution zu den Komplexen MHal₂(CO)₂(PMe₃)₃ (25, 26, M = Mo, W; Hal = I, Br, Cl).

Carbonyl Complexes of Molybdenum and Tungsten of Coordination Number Seven, II¹⁾ The Complexes MHal₂(CO)₃L₂ and MHal₂(CO)₂L₃

The complexes $WHal_2(CO)_4L$ (3-5, Hal = I, Br, Cl; L = PMe₃, AsMe₃, SbMe₃) readily undergo CO substitution. Thereby the complexes $WHal_2(CO)_3LL'$ (7-13, 24, L' = PMe₃, AsMe₃, SbMe₃, AsMe₂H, P(OMe)₃, PPh₃, Py, I) can be prepared. Compounds of this type are also accessible from [WHal₂(CO)₄]₂ with PMe₃, AsMe₃, or SbMe₃ as well as from Mo(CO)₆ and W(CO)₆ resp., with AsMe₃Hal₂. Subsequent reactions of such interconversions are the elimination of CO and further substitution yielding the complexes $MHal_2(CO)_2(PMe_3)_3$ (25, 26, M = Mo, W; Hal = I, Br, Cl).

Von den Carbonyl-Halogeno-Komplexen des Molybdäns und Wolframs waren die einfachsten Vertreter des Typs **A** bis jetzt nicht isolierbar^{2,3}) und deren monosubstituierte Abkömmlinge des Typs **B** bis vor kurzem unbekannt¹). Erst die Disubstitution mit voluminösen oder zweizähnigen Phosphan- oder Arsanliganden schien eine ausreichende Stabilisierung zu gewährleisten, was sich in der relativ großen Zahl bekannter Komplexe des Typs **C** zeigt^{4,5}). Letztere haben sich jedoch wegen ihrer Inertheit als wenig nutzbar für chemische Umsetzungen erwiesen^{4,5}), während umgekehrt die Verbindungen des Typs **A** so labil sind, daß an ihrer Stelle nur ihre halogenverbrückten Aggregationsprodukte **1** und **2** isoliert werden können^{2,3,6,7}). Eine Mittelstellung nehmen hier die vorstehend von uns beschriebenen Komplexe **3** – **5** des Typs **B** ein¹), die einerseits relativ leicht darstellbar und handhabbar sind, ihre Reaktivität aber andererseits durch ihre Aggregationsneigung, z. B. zu den Komplexen **6**, zu erkennen geben.

Die Verbindungen 3-5 sind damit geeignete Ausgangsmaterialien zur Entwicklung einer Derivatchemie der Carbonyl-Halogeno-Komplexe des Molybdäns und Wolframs. Von den drei naheliegenden Möglichkeiten (CO-Substitution, Halogensubstitution, Reduktion) haben wir uns zunächst der CO-Substitution durch anorganische und organische Donorsysteme zugewandt. In diesem Zusammenhang beschreibt die vorliegende Arbeit Verbindungen, die auf den Ersatz von CO-Liganden durch Donorliganden aus der fünften Hauptgruppe zurückgehen.

MHal ₂ (CO) ₅	MHal ₂ (CO) ₄ L	$MHal_2(CO)_3L_2$
Α	В	С
M = M	o, W; Hal = Cl, Br, I	
[MHal ₂ (CO) ₄] ₂	WHal ₂ (CO) ₄ L	[WCl ₂ (CO) ₃ L] ₂
1a-c: M = Mo	3a-c: Hal = I	6a: L = PMe ₃
2a-c: M = W	4a,b: Hal = Br	b: L = AsMe ₃
a: Hal = I	5a: Hal = Cl	
b: Hal = Br	a: L = PMe ₃	
c: Hal = Cl	b: L = $AsMe_3$	
	c: L = $SbMe_3$	

Darstellung der Komplexe MHal₂(CO)₃L₂

Ausgehend von den Komplexen 3 ließen sich durch stöchiometrische Zugabe von PMe₃, AsMe₃ bzw. SbMe₃ unter milden Bedingungen die Komplexe 7 mit allen sechs Kombinationen von L und L' darstellen. Die gleiche Reaktion ausgehend von 4 wurde für **8a,b,d** und e verwirklicht. **8f** konnte wegen der Unzugänglichkeit von 4c so nicht gewonnen werden; es wurde jedoch wie auch **8c** auf einem anderen Wege dargestellt, s.u. Als Ausgangsmaterial für **9a,b,d** und e dienten die Zweikernkomplexe 6 in analogen Umsetzungen. Die Nichtexistenz des Trimethylstibankomplexes 6 verlangte auch hier nach einem anderen Weg zu **9f**. Die Schwierigkeiten¹⁾ bei der Darstellung der Trimethylstibanverbindungen **3**-6 zeigten sich auch hier darin, daß bei Zugabe von SbMe₃ wieder die Nebenprodukte SbMe₃Hal₂ entstanden, die z.T. nur schwer abzutrennen waren, wodurch z.B. **9e** nicht analysenrein zu erhalten war.

VV I	2(CC)) ₃ LL'	1	WBr ₂ (CC) ₃ LL	W	Cl ₂ (CO) ₃ I	'L'	
	7a	-f		8a-f			9a - f		
		а	b	c	d	e	f		
	L	PMe_3	PMe_3	AsMe ₃	PMe ₃	AsMe ₃	SbMe3		
	L'	PMe_3	AsMe ₃	AsMe ₃	SbMe_3	${\rm SbMe}_3$	${\rm SbMe}_3$		
W1	₂ (CC))3(AsN	∕Ie₂H)L	WI2(CC) ₃ [P (OM	le)3]L	W12(CO)	₃ (PPh ₃)L	Wl ₂ (CO) ₃ (Py)L
		10a - c		11	la-c		12a	- c	13a - c
			a l		2				
		L	a PMe ₃	AsMe ₃ S	SbMe ₃				
Mo	⊳I₂(C	D)3(As	a PMe ₃	AsMe ₃ S MoB	2 5bMe ₃ r ₂ (CO) ₃ (15	AsMe₃)₂	Mo	Cl ₂ (CO) ₃ (As 16	$Me_3)_2$

An den am besten zugänglichen Ausgangskomplexen 3 wurden weitere Substitutionsreaktionen vorgenommen. Mit dem funktionellen Arsan AsMe₂H bildeten sie die mäßig stabilen Produkte 10a - c, mit Trimethylphosphit erwartungsgemäß 11a - c. Auch der sperrige Ligand Triphenylphosphan ließ sich zu 12a - c einführen, und die Stickstoffbase Pyridin reagierte problemlos zu 13a - c. Für alle diese Komplexe mit zwei verschiedenen Donorliganden gab es bisher kein Darstellungsverfahren, jedoch sind Verbindungen des Typs C mit zwei gleichen Liganden L, z. B. WI₂(CO)₃(PPh₃)₂⁷⁾ und WI₂(CO)₃(Py)₂⁸⁾ bekannt.

Der Syntheseweg für letztere Verbindungen ging von den zweikernigen Carbonylwolframhalogeniden 2 aus. Entsprechende Umsetzungen von 2a - c mit der doppelt molaren Menge von PMe₃, AsMe₃ bzw. SbMe₃ ließen sich auch hier zur Gewinnung von 7a und c, 8a und f sowie 9f nutzen, von denen 8f und 9f nur auf diesem Wege zugänglich waren. Neben 8f und 9f bildeten sich wieder die Halogenide SbMe₃Hal₂, die die Reinisolierung der beiden Komplexe erschwerten.

Eine weitere Möglichkeit zur Bildung des Komplextyps C ergab sich in Analogie zu einem der Synthesewege für den Typ \mathbf{B}^{1} . Wir hatten gefunden, daß UV-Bestrahlung von W(CO)₆ in Gegenwart von SbMe₃I₂ auch zu 3c führt. Mit den drei Arsen-Halogen-Verbindungen AsMe₃Hal₂ und W(CO)₆ führte diese Umsetzung nun einen Schritt weiter, so daß nicht die Komplexe 3b, 4b, 5b oder 6b, sondern ihre AsMe₃-Substitutionsprodukte 7c, 8c und 9c erhalten wurden. Diese ungewöhnliche Reaktion ließ sich auch auf Mo(CO)₆ übertragen, wobei mit 14–16 die drei einzigen von uns erhaltenen Molybdänkomplexe dieses Typs gebildet wurden, deren Labilität deutlich über der der entsprechenden Wolframkomplexe liegt.

Alle Komplexe 7–16 sind gelb bis orangefarben, im festen Zustand an der Luft handhabbar und thermisch deutlich stabiler als ihre Vorläufer 3-6. Sie schmelzen jedoch unter Zersetzung, und deutlich unterhalb des Schmelzpunkts zeigen sich chemische Umwandlungen durch Farbvertiefung an (s. u.). Ihre thermische Empfindlichkeit folgt bezüglich der Metallatome der Sequenz W < Mo und bezüglich der Liganden der Sequenz PMe₃ < AsMe₃ < SbMe₃ bzw. I < Br < Cl.

Weitere Reaktionen

Die vor dem Schmelzen der Komplexe des Typs C eintretende Umwandlung geht mit der Abspaltung von CO einher. Sie entspricht in der Mehrzahl der Fälle einer vollständigen Zersetzung, für einige Komplexe ließ sie sich jedoch als reversible CO-Eliminierung identifizieren. Wurden z. B. die Verbindungen 7 im Hochvakuum auf über 100°C erhitzt, so ließen sich in allen sechs Fällen aus den Rückständen mit Cyclohexan Substanzen extrahieren, die statt drei nur noch zwei CO-Valenzschwingungen im IR-Spektrum zeigten und die nach dem Durchleiten von CO-Gas wieder die ursprünglichen IR-Absorptionen von 7a - f ergaben. Eine entsprechende CO-Abspaltung zeigten 8c, 9c, 14 und 15 beim Erwärmen in Lösung und 7c, 8c, 9c und 14 – 16 bei der UV-Bestrahlung in Lösung. Die auftretenden IR-Banden waren in allen Fällen vergleichbar, und stets waren die Umwandlungen nicht vollständig. Nur in einem Falle war die Isolierung eines einheitlichen Produkts möglich: Aus 16, dem labilsten der Typ-C-Komplexe, bildete sich der Zweikernkomplex 22. Die einheitlichen Farben und IR-Spektren der

übrigen CO-Eliminierungsprodukte veranlassen uns aber, ihnen die entsprechenden Zusammensetzungen 17-21 zuzuordnen.

LL'(CO)₂HalW Hal(CO)₂LL' (Me₃As)₂(CO)₂HalMo Hal(CO)₂(AsMe₃)₂ 17a-f: Hal = I 20: Hal = I 18c: Hal = Br 21: Hal = Br 22: Hal = Cl 19c: Hal = C1 bezüglich L und L' (a-f)s.o. $(Me_3NH)[MoCl_3(CO)_2(AsMe_3)_2]$ (Mepy)[WI₃(CO)₃PMe₃] 24 23 $MoHal_2(CO)_2(PMe_3)_3$ $WHal_2(CO)_2(PMe_3)_3$ 25a: Hal = I 26a: Hal = I b: Hal = Br b: Hal = Br **c:** Hal = C1 c: Hal = Cl

Es sind einige Komplexe des Molybdäns und Wolframs beschrieben, die in ihrer Zusammensetzung den Verbindungen 17 – 22 entsprechen^{3,9,10}). Infolge des Vorliegens sperriger Phosphan- bzw. Arsanliganden sind diese jedoch blau, einkernig und koordinativ ungesättigt und zeigen andere IR-Spektren im v(CO)-Bereich. Der geringe Raumbedarf der hier verwendeten EMe₃-Liganden erlaubt dagegen die Absättigung durch Halogenverbrückung⁹). Die am einfachsten erfolgende Umwandlung 16 \rightarrow 22 sowie die am schwersten eintretenden und leicht umkehrbaren Umwandlungen 7 \rightarrow 17 zeigen dabei, daß hier ganz ähnliche Verhältnisse herrschen wie zwischen den Komplexen des Typs **B** und ihren CO-Abspaltungsprodukten [MHal₂(CO)₃L]₂¹).

Die Halogenbrücken in 22 sind durch Donorliganden zu öffnen, was sich auch schon an der CO-Anlagerung an 17a - f zeigte. So reagierte 22 mit Trimethylammoniumchlorid zu der Ionenverbindung 23. Das Anion von 23 repräsentiert die Alternative $MA_3B_2C_2$ für siebenfach koordinierte Metallkomplexe, für die es unseres Wissens bisher keine Beispiele gibt^{5,11)}, abgesehen davon, daß die unmittelbare Koordination der Metallatome in 22 und 23 die gleiche ist. 23 geht formal auch durch CO-Substitution aus einem bisher unbekannten Komplex mit dem Anion $MoCl_3(CO)_3AsMe_3^-$ hervor, das dem bekannten Komplextyp $MHal_3(CO)_3L^-$ angehört^{12,13)}. Letzterer ist wiederum leicht aus dem neuen Komplextyp B zu erhalten: 3a und 1-Methylpyridinium-iodid lieferten glatt die Ionenverbindung 24, die sich auch als eine Variante des Komplextyps C klassifizieren läßt.

Auch mit Trimethylphosphan reagierte der Zweikernkomplex 22 unter Spaltung. Bei stöchiometrischer Reaktionsführung resultierten Gemische von Komplexen unterschiedlichen PMe₃- und AsMe₃-Gehalts. Mit einem PMe₃-Überschuß wurden jedoch auch alle AsMe₃-Liganden substituiert und es bildete sich 25c. 25c gehört dem bereits beschriebenen Komplextyp MHal₂(CO)₂L₃ an^{9,11,14,15)}, von dem es stabile Vertreter nur mit wenig raumerfüllenden und guten π -Akzeptorliganden L gibt. Dies bestätigte sich hier bei den Versuchen, weitere derartige Komplexe zu erhalten. Ausgehend von 1a - ckonnten nur mit Trimethylphosphan im Überschuß solche Verbindungen, nämlich 25a - c, dargestellt werden. Die Annahme, daß dabei Komplexe der Typen B, C oder [MHal₂(CO)₃L]₂ als Zwischenstufen durchlaufen werden, ließ sich durch Einsatz entsprechender Wolframverbindungen stützen. So entstanden aus 3a bzw. 4a mit überschüssigem PMe₃ die Tris-Phosphan-Komplexe 26a und b, aus 6b bildete sich unter AsMe₃-Verdrängung 26c, und 8b lieferte ebenfalls unter AsMe₃-Verdrängung 26b. Mit Trimethylarsan konnte auch unter drastischen Reaktionsbedingungen keine weitere Substitution an den Komplexen 7-9 erzielt werden, und auch die Einführung eines vierten PMe₃-Liganden gelang ausgehend von den Komplexen 26 nicht.

Die Einfachheit der eingesetzten Liganden und die Reaktivität der Ausgangskomplexe 3-6 haben somit eine Erweiterung des relativ gut untersuchten Gebiets dieser siebenfach koordinierten Metallkomplexe^{4,5,11,14)} ermöglicht. Mit funktionellen anorganischen oder organischen Liganden sollte ausgehend von 3-6 auch eine Erschließung der praktisch unbekannten Reaktionschemie solcher Verbindungen möglich sein.

Spektren

Für die Koordinationszahl sieben gibt es mehrere Komplexgeometrien vergleichbarer Stabilität $^{5,11)}$. Dazu sind für die hier gegebenen Zusammensetzungen stets zahlreiche Isomere denkbar. Vor diesem Hintergrund sind die Spektren der Komplexe **7**-**26**, deren relevante Daten in Tab. 1

	δ/ <i>J</i> (L)	δ/J (L')		v(CO)	
7a	1.54/8.6 ^{a)}		2017 st	1945 sst	1908 st
7 b	1.59/10.3	1.43	2022 st	1943 sst	1903 m
7c	1.42		2010 st	1942 sst	1906 m
7 d	1.56/9.7	1.16	2014 st	1939 sst	1904 m
7e	1.44	1.17	2014 st	1938 sst	1903 m
7 f	1.14		2013 st	1938 sst	1904 m
8a	1.33/9.0 ^{a)}		2029 st	1941 sst	1904 st
8 b	1.34/10.0	1.23	2028 st	1944 sst	1901 st
8c	1.27		2017 st	1943 sst	1905 st
8 d	1.38/9.8	1.03	2018 st	1939 sst	1902 st
8e	1.26	1.02	2018 st	1938 sst	1904 st
8f	1.02		2018 st	1936 sst	1903 st
9a	1.24/8.6 ^{a)}		2022 st	1938 sst	1900 m
9b	1.27/9.4	1.19	2022 st	1937 sst	1899 m
9c	1.19		2016 st	1940 sst	1902 m
9d	1.28/9.8	0.99	2018 st	1935 sst	1898 m
9e	1.17	0.93	2020 st	1937 sst	1900 m
9 f	0.92		2015 st	1933 sst	1900 m
10 a	1.56/10.2	1.32/5.4 ^{b)}	2020 st	1950 sst	1910 m
10 b	1.41	1.31/5.2 ^{b)}	2018 st	1948 sst	1911 m
10 c	1.14	1.32/5.2 ^{b)}	2015 st	1945 sst	1911 m

Tab. 1. ¹H-NMR- (Benzol, int. TMS, δ-Werte, J in Hz) und IR-Daten (Cyclohexan, cm⁻¹) der neuen Komplexe

		Tab. 1 (Fortse	tzung)		
	δ/J (L)	δ/ <i>J</i> (L')		v(CO)	
11a	1.51/9.4	3.28/12.6 3.34/12.0	2060 Sch 1985 m 1924 m	2037 m 1966 sst 1905 s	2019 m 1942 m 1880 s
11b	1.40	3.27/12.2 3.34/11.8	2059 Sch 1983 m 1931 m	2035 m 1965 sst 1915 Sch	2023 m 1947 m 1880 s
11c	1.14 1.17	3.31/12.4 3.34/12.0	2041 m 1982 m 1937 st 1878 m	2032 m 1962 sst 1930 st	2015 m 1944 sst 1902 m
12 a	1.48/9.8	-	2015 st 1902 sst	1951 Sch	1946 st
12 b	1.39	_	2015 sst 1918 m	1952 s	1938 st
12 c	1.13	-	2012 sst	1934 st	1918 m
13 a	1.77/9.8		2031 m	1956 st	1895 m
13b	1.43; 1.25; 1.59	_	2017 st	1940 st	1905 m
13 c	1.17; 1.24	—	2012 m	1938 st	1904 m
14	1.40		2017 st	1960 sst	1918 st
15	1.27		2027 st	1957 sst	1912 st
16	1.20		2030 st	1947 sst	1912 st
17a ^{c)}			1933 st	1837 st	
17b ^{c)}			1933 st	1835 st	
17c ^{c)}	_		1931 st	1837 st	
17d ^{c)}	_		1930 st	1834 st	
17e ^{c)}	_		1929 st	1836 st	
17f ^{c)}	_		1928 st	1837 st	
18c ^{c)}	_		1943 st	1839 st	
19c ^{c)}	_		1942 st	1837 st	
20 c)	_		1946 st	1841 st	
21 ^{c)}	-		1941 st	1837 st	
22	1.24		1937 st	1841 st	
23	1.36		1940 st	1844 st	
24 ^{d)}	1.84/9.8		2026 st	1949 sst	1882 m
25 a	$1.27 - 1.73^{e}$		1945 sst	1849 st	1836 m
25 b	$1.07 - 1.90^{e}$		1940 sst	1842 st	1829 m
25 c	$1.00 - 1.50^{e}$		1939 sst	1840 st	1830 st
26 a	1.20 – 1.77 ^{e)}		1933 sst	1837 st	1824 st
26 b	$1.14 - 1.73^{e}$		1933 sst	1833 st	1821 st
26 c	1.06 – 1.51 ^{e)}		1928 sst	1828 st	1817 sst

^{a)} Pseudotriplett. $-^{b)}$ Das As - H-NMR-Signal wurde nicht beobachtet. $-^{c)}$ Nur IR-spektroskopisch untersucht. $-^{d)}$ IR-Messung in CHCl₃. $-^{e)}$ Unsymmetrisches Multiplett.

zusammengefaßt sind, erstaunlich einfach. Mit Ausnahme der Verbindungen 11 und 13 zeigen alle Komplexe, die die Zusammensetzung $MHal_2(CO)_3L_2$ haben (7-16, 24), einfache IR-Spektren mit vergleichbarer Bandenlage und -intensität, und sie haben die einfachsten denkbaren ¹H-NMR-Spektren. Daraus kann jedoch nicht auf sehr symmetrische Strukturen der entsprechenden

Moleküle geschlossen werden. Denn die beiden Liganden L sollten sich stets in nichtäquivalenten Positionen befinden, und es herrscht wahrscheinlich in allen Fällen Ligandenfluktuation. Dies ergibt sich aus Strukturbestimmungen und allgemeinen Überlegungen ^{5,11}, aber nur in Ausnahmefällen ließen sich isomere Komplexe isolieren ¹⁶). Daß beides auch hier gilt, zeigte sich bei einer ¹H-NMR-Untersuchung von **8a** in CH₂Cl₂/CDCl₃ bei variabler Temperatur: oberhalb von Raumtemperatur (gut geprägt ab 45 °C) deutet ein 1 : 2 : 1-Pseudotriplett die chemische Äquivalenz der PMe₃-Gruppen auf der NMR-Zeitskala an; um 0 °C sind zwei breite unstrukturierte Signale zu beobachten; und unterhalb von -20 °C treten zwei breite Dubletts auf, deren Auflösung bei etwa -30 °C am besten ist und bei tiefen Temperaturen (bis -75 °C) schlechter wird. Daraus kann auf den raschen Platzwechsel der PMe₃-Liganden ohne W – P-Bindungslösung bei Raumtemperatur und auf die Nichtäquivalenz ihrer Positionen geschlossen werden, wie sie auch in der Festkörperstruktur von MoCl₂(CO)₃(PEt₃)₂ gegeben ist¹⁷).

Hinweise auf das Vorliegen von mehr als einem Isomeren liegen hier für den Komplextyp C nur bei den Verbindungen 11 und 13 vor. Für die EMe₃-Gruppen von 11c und 13b und c und für die $P(OMe)_3$ -Liganden von 11a - c tritt mehr als ein NMR-Signal auf, wobei das zweite oder dritte der angegebenen Signale etwa 10% der Intensität des ersten aufweisen. Die IR-Spektren von 13a - c sind einfach und normal, während die von 11a - c einen bisher für solche Verbindungen nicht beobachteten Bandenreichtum zeigen. In beiden Fällen sind aus den vorhandenen Informationen keine Schlüsse auf die Geometrie möglicher Isomerer zu ziehen.

Die Dicarbonylmetall-Einheiten in den angenommenen Verbindungen 17 – 21 und dem isolierten Komplex 22 geben sich durch zwei v(CO)-Banden in der erwarteten Lage⁹⁾ zu erkennen. Das einkernige 23 ist hierbei dem zweikernigen 22 sehr ähnlich, was auf Strukturverwandtschaft hindeutet. Im Unterschied dazu zeigen die Dicarbonylkomplexe 25 und 26 drei CO-Valenzschwingungen, deren niedrige Lage dem Vorhandensein der drei starken Donorliganden entspricht und deren Zahl für das gleichzeitige Vorliegen von mindestens zwei Isomeren spricht^{18,19}). Die sehr unregelmäßig strukturierten NMR-Spektren von 25 und 26, die zwar bei tiefen Temperaturen (bis – 90 °C in CH₂Cl₂) ihr Aussehen ändern, aber keine Zuordnung zu Dubletts oder Pseudotripletts erlauben, ergeben keine auswertbare Strukturinformation.

Die spektroskopischen Daten der neuen Komplexe 7-26 entsprechen im wesentlichen denen bekannter analoger Verbindungen. Die nachgewiesene Beweglichkeit in der Ligandensphäre läßt die Frage offen, ob die an exemplarischen Vertretern ermittelten Festkörper-Strukturen auch in Lösung existieren.

Diese Arbeit wurde vom Fonds der Chemischen Industrie unterstützt. Wir danken Herrn Dr. P. Merbach, Erlangen, und Herrn Dr. K. Steinbach, Marburg, für die Aufnahme von Massenspektren und Herrn A. Hasenhindl vom hiesigen Institut für Makromolekulare Chemie für die variable-Temperatur-NMR-Messungen.

Experimenteller Teil

Die allgemeinen experimentellen Techniken waren wie beschrieben²⁰⁾. Bestrahlungen erfolgten in Glasgefäßen mit einem Hanau-TQ 150-Hg-Hochdruckbrenner. Die Ausgangsverbindungen wurden nach den angegebenen Literaturvorschriften dargestellt.

Darstellung von 7-16: Die experimentellen Details hierzu enthält Tab. 2, die Charakterisierung der neuen Komplexe gibt Tab. 3. Die einzelnen Darstellungsmethoden waren dabei wie folgt:

A-1: Die angegebene Menge des Ausgangskomplexes **B** wurde in dem aufgeführten Lösungsmittel bei der genannten Reaktionstemperatur mit der betreffenden Lewis-Base L' versetzt. Die Komplexe **3c**, **4a**, **4b**, **6a** und **6b** wurden jeweils frisch hergestellt und ohne weitere Aufarbeitung

					Tab.	2. Dars	tellung de	er Kompl	exe 7-16						
Kom-	Variante	Ausgan _l Met	gsverbine allcarboi	dungen nvl			Lig	and			Reakt zeit	ions- temp.	Trock- nungs-	Ausbe	eute
plex			[g]	[mmol]	Lsgm.	[m]	[g]	[mmol]	Lsgm.	[m]	[min]	[°C]	dauer [h]	[8]	[0/0]
7a	A-1	3a	0.20	0.32	Hexan	40	0.02	0.32	ł	ł	60	20	9	0.15	70
7a	В	2a	0.83	1.51	Benzol	30	0.23	3.00	I	ţ	210	20	9	0.60	30
7b	A-1	3а	0.39	0.62	Hexan	40	0.09	0.72	I	ł	60	20	9	0.35	78
7b	A-1	3b	0.30	0.45	Hexan	40	0.03	0.44	ı	1	60	20	9	0.24	75
7c	A-1	3b	0.31	0.46	Hexan	20	0.24	2.00	Ether	S	60	20	9	0.10	28
7c	B	2a	0.74	0.64	Benzol	20	0.34	2.80	Ether	٢	180	20	9	0.88	90
7c	C	W(CO)6	0.35	1.00	Benzol	20	0.37 ^{a)}	1.00	I	I	10	40	24	0.13	11 b)
7 d	A-1	3a	0.39	0.62	Hexan	40	0.10	0.61	Ether	1	60	20	9	0.38	80
7 d	A-1	3с	0.29	0.41	Benzol	10	0.03	0.40	Benzol	20	30	20	9	0.22	71
7e	A-1	3b	0.94	1.40	Hexan	40	0.33	2.00	Ether	ę	60	20	9	0.97	86
7e	A-1	3c	0.29	0.41	Benzol	20	0.05	0.41	Ether	7	60	20	9	0.30	90
7f	A-1	3с	4.15	5.79	THF	30	1.02	6.10	Ether	10	130	20	14	4.21	85
81	A-1	4a	0.08	0.15	Hexan	10	0.01	0.14	Hexan	10	60	- 20	1	0.08	92
8a	в	2b	1.00	1.00	CHCI3	20	0.13	1.80	I	I	30	20	1	0.42	73
8b	A-1	4a	0.10	0.18	Hexan	10	0.03	0.24	Ether	1	30	- 20	1	0.09	83
8c	C	W(CO) ₆	1.06	3.00	Benzol	20	0.84 ^{c)}	3.00	ı	1	30	40	24	0.54	27 d)
8 d	A-1	4a	0.66	1.25	Hexan	20	0.53	3.20	Ether	S	30	- 20	1	0.54	65
8e	A-1	4b	0.14	0.25	Hexan	10	0.11	0.64	Ether	1	30	- 20	1	0.15	84
8f	в	2b	1.00	1.00	CHCI3	20	0.53	3.20	Ether	5	120	20	12	0.24	32
9a	A-1	6a	0.12	0.14	Hexan	10	0.01	0.18	ł	i	30	- 25	1	0.05	36
96	A-1	6a	0.04	0.05	Hexan	10	0.03	0.24	Ether	-	30	- 25	1	0.03	60
9c	C	W(CO) ₆	1.06	3.00	Benzol	20	0.58 e)	3.00	I	1	85	40	24	0.48	28 f)
9 6	A-1	6a	0.10	0.12	Hexan	10	0.05	0.32	Ether	0.5	30	- 25	1	0.10	76
9e	A-1	6b	0.12	0.27	Hexan	10	0.21	1.28	Ether	7	30	- 25	1	0.04	24
9f	в	2c	0.52	0.57	Benzol	10	0.21	1.28	Ether	2	120	20	24	0.11	30

Kom-	Variante	Ausgang Meta	sverbine allcarhoi	dungen avl			Lig	and			Reakt	temn	Trock- nungs-	Aust	oente
plex			[g]	[mmol]	Lsgm.	[m]	[g]	[mmol]	Lsgm.	[m]	[min]		dauer [h]	[g]	[0/0]
10a	A-1	3a	0.46	0.74	Hexan	20	0.08	0.74	Hexan	16	120	20	14	0.42	81
10b	A-1	3b	0.48	0.72	Hexan	20	0.08	0.72	Hexan	16	120	20	14	0.40	74
10c	A-1	3с	0.35	0.49	Hexan	20	0.05	0.49	Hexan	11	120	20	14	0.20	51
11a	A-1 .	3а	0.32	0.50	Hexan	10	0.06	0.50	Hexan	10	120	20	14	0.29	80
11b	A-1	3b	0.34	0.50	Hexan	10	0.06	0.50	Hexan	10	120	20	14	0.30	78
11c	A-2	3с	0.28	0.39	Hexan	20	0.05	0.40	Hexan	20	60	20	1/6	0.13	41
12a	A-1	3a	0.34	0.52	Hexan	20	0.14	0.52	1	I	120	20	14	0.27	99
12b	A-1	3b	0.32	0.48	Hexan	20	0.13	0.48	ł	ł	120	20	14	0.16	37
12c	A-1	3с	0.10	0.14	Hexan	20	0.04	0.14	ł	l	120	20	14	0.10	75
13 a	A-1	3a	0.32	0.50	Toluol	15	0.04	0.50	Toluol	4	120	20	14	0.21	62
13b	A-1	3b	0.34	0.50	Toluol	10	0.04	0.50	Toluol	10	120	20	14	0.18	50
13c	A-2	3с	0.02	0.03	Hexan	10	0.002	0.030	Hexan	S	120	20	1/6	0.02	65
14	c	Mo(CO)	6 0.80	3.00	Benzol	60	1.12 ^{a)}	3.00	I	I	140	40	24	0.49	24
15	С	Mo(CO)	6 0.80	3.00	Benzol	60	0.84 c)	3.00	ł	I	65	40	24	0.44	22
16	С	Mo(CO)	6 0.54	2.00	Benzol	4	0.38e)	2.00	ı	1	330	40	24	0.24	26

Siebenfach koordinierte Carbonylkomplexe des Molybdäns und Wolframs, II

Chem. Ber. 115 (1982)

240

	Та	b. 3. Charakter	risierung der K	omplexe 7 – 16				
Komplex	Name	Farbe	Schmp. [°C]	Summenformel (Molmasse)		C H An	ıalyse M	×
7a	Tricarbonyldiiodobis(trimethylphos- phan)wolfram	gelb	209 – 212 (Zers.)	C ₉ H ₁₈ I ₂ O ₃ P ₂ W (673.8)	Ber. Gef.	16.04 2.69 W 15.78 2.80 W Molmasse 667 (osmometr.)	V 27.28 V 26.80 (dampfdruc	k-
7 b	Tricarbonyldiiodo(trimethylarsan)- (trimethylphosphan)wolfram	gelb	203 – 205 (Zers.)	C ₉ H ₁₈ Asl ₂ O ₃ PW (717.8)	Ber. Gef.	15.06 2.53 W 15.18 2.48 W Molmasse 665 (osmometr.)	V 25.61 V 25.52 (dampfdruc	k -
7c	Tricarbonyldiiodobis(trimethylarsan)- wolfram	orange	200 – 203 (Zers.)	C ₉ H ₁₈ As ₂ I ₂ O ₃ W (761.7)	Ber. Gef.	14.19 2.38 W 14.34 2.46 W Molmasse 743 (osmometr.)	V 24.14 V 24.06 (dampfdruc	*
7 d	Tricarbonyldiiodo(trimethylphosphan)- (trimethylstiban)wolfram	orangegelb	184 – 185 (Zers.)	C ₉ H ₁₈ I ₂ O ₃ PSbW (764.6)	Ber. Gef.	14.14 2.37 W 14.31 2.31 W	V 24.04 V 24.16	
7e	Tricarbonyldiiodo(trimethylarsan)- (trimethylstiban)wolfram	orange	170 – 171 (Zers.)	C ₉ H ₁₈ Asl ₂ O ₃ SbW (808.6)	Ber. Gef.	13.37 2.24 W 13.44 2.18 W Molmasse 828 (osmometr.)	V 22.74 V 22.36 (dampfdruc	بد
7f	Tricarbonyldiiodobis(trimethylstiban)- wolfram	orange	191 – 192 (Zers.)	C ₉ H ₁₈ I ₂ O ₃ Sb ₂ W (855.4)	Ber. Gef.	12.64 2.12 W 12.71 2.05 W Molmasse 820 ((osmometr.)	/ 21.49 / 21.22 (dampfdruc	¥.
83	Dibromotricarbonylbis(trimethyl- phosphan)wolfram	gelb	141 – 146 (Zers.)	C ₉ H ₁₈ Br ₂ O ₃ P ₂ W (579.9)	Ber. Gef.	18.64 3.13 W 19.44 3.35 W	/ 31.71 Br / 31.75 Br	27.56 28.85
8b	Dibromotricarbonyl(trimethylarsan)- (trimethylphosphan)wolfram	gelb	168 – 174 (Zers.)	C ₉ H ₁₈ AsBr ₂ O ₃ PW (623.8)	Ber. Gef.	17.33 2.91 17.54 2.87	B B	25.62 25.50
о 90	Dibromotricarbonylbis(trimethylarsan)- wolfram	gelb	177 – 178 (Zers.)	C ₉ H ₁₈ As ₂ Br ₂ O ₃ W (667.8)	Gef.	16.19 2.72 16.54 2.75 Molmasse 700 (0 osmometr.)	Br Br dampfdruc	23.93 24.24 k-
8d	Dibromotricarbonyl(trimethylphosphan)- (trimethylstiban)wolfram	gelb	130 – 135 (Zers.)	C ₉ H ₁₈ Br ₂ O ₃ PSbW (670.6)	Ber. Gef.	16.12 2.71 16.27 2.96	Br Br	23.83 23.91
8e	Dibromotricarbonyl(trimethylarsan)- (trimethylstiban)wolfram	gelb	148 – 150 (Zers.)	C ₉ H ₁₈ AsBr ₂ O ₃ SbW (714.6)	Ber. Gef.	15.13 2.54 15.38 2.65	Вr Вr	22.37 22.11

		Tal	b. 3 (Fortsetzun	g)				
Komplex	Name	Farbe	Schmp. [°C]	Summenformel (Molmasse)		СН	Analyse M	×
8f	Dibromotricarbonylbis(trimethylstiban)- wolfram	gelb	107 - 114 (Zers.)	C ₉ H ₁₈ Br ₂ O ₃ Sb ₂ W (761.4)	Ber. Gef.	14.20 2.38 14.40 2.48	W 24.15 W 23.34	Br 21.03 Br 20.99
9a	Tricarbonyldichlorobis(trimethyl- phosphan)wolfram	gelb	113-116 (Zers.)	C ₉ H ₁₈ Cl ₂ O ₃ P ₂ W (490.9)	Ber. Gef.	22.02 3.70 21.61 4.06	W 37.45 W 38.46	
9b	Tricarbonyldichloro(trimethylarsan)- (trimethylphosphan)wolfram	gelb	147 – 148 (Zers.)	C ₉ H ₁₈ AsCl ₂ O ₃ PW (534.9)	Ber. Gef.	20.21 3.39 20.89 3.21	_	Cl 13.26 Cl 13.77
9c	Tricarbonyldichlorobis(trimethylarsan)- wolfram	gelb	160 – 163 (Zers.)	C ₉ H ₁₈ As ₂ Cl ₂ O ₃ W (578.8)	Ber. Gef.	18.68 3.13 18.75 3.07		Cl 12.25 Cl 12.44
				,		Molmasse 6 osmometr.)	il6 (dampfd	ruck-
P 6	Tricarbonyldichloro(trimethylphosphan)- (trimethylstiban)wolfram	gelb	126 – 128 (Zers.)	C ₉ H ₁₈ Cl ₂ O ₃ PSbW (581.7)	Ber. Gef.	18.58 3.12 18.65 3.22		Cl 12.19 Cl 12.03
9f	Tricarbonyldichlorobis(trimethylstiban)- wolfram	gelb	105 – 110 (Zers.)	C ₉ H ₁₈ Cl ₂ O ₃ Sb ₂ W (672.5)	Ber. Gef.	16.07 2.70 16.31 2.63	W 24.34 W 23.51	
10a	Tricarbonyl(dimethylarsan)diiodo(tri- methylphosphan)wolfram	gelb	103 – 105 (Zers.)	C ₈ H ₁₆ AsI ₂ O ₃ PW (703.8)	Ber. Gef.	13.65 2.29 13.78 2.24	W 26.12 W 25.75	
10b	Tricarbonyl(dimethylarsan)diiodo- (trimethylarsan)wolfram	gelb	126 – 128 (Zers.)	C ₈ H ₁₆ As ₂ I ₂ O ₃ W (747.7)	Ber. Gef.	12.85 2.16 12.81 1.93	W 24.59 W 24.71	
						Molmasse 7 osmometr.)	32 (dampfd	ruck-
						2	48 (EI-MS)	
10c	Tricarbonyl(dimethylarsan)diiodo- (trimethylstiban)wolfram	gelb	115 – 117 (Zers.)	C ₈ H ₁₆ AsI ₂ O ₃ SbW (794.5)	Ber. Gef.	12.09 2.03 12.10 2.00	W 23.14 W 23.20	
11a	Tricarbonyldiiodo(trimethylphosphan)- (trimethylphosphit)wolfram	gelb	115 - 116 (Zers.)	C ₉ H ₁₈ I ₂ O ₆ P ₂ W (721.8)	Ber. Gef.	14.98 2.53 14.83 2.52	W 25.47 W 26.29	
				,		Molmasse 7 osmometr.)	56 (dampfd	ruck-
116	Tricarbonyldiiodo(trimethylarsan)- (trimethylphosphit)wolfram	gelb	133 – 134 (Zers.)	C ₉ H ₁₈ AsI ₂ O ₆ PW (765.8)	Ber. Gef.	14.12 2.37 14.04 2.35	W 24.01 W 23.89	

Chem. Ber. 115 (1982)

240*

		Tat	o. 3 (Fortsetzung	()	
Komplex	Name	Farbe	Schmp. [°C]	Summenformel (Molmasse)	C H Malyse X
11c	Tricar bonyldiiodo(trimethylphosphit)- (trimethylstiban)wolfram	gelb	76–78 (Zers.)	C ₉ H ₁₈ I ₂ O ₆ PSbW (812.6)	Ber. 13.30 2.23 W 22.62 Gef. 14.37 2.57 W 22.48
12a	Tricarbonyldiiodo(trimethylphosphan)- (triphenylphosphan)wolfram	gelb	177 – 180 (Zers.)	C ₂₄ H ₂₄ I ₂ O ₃ P ₂ W (860.1)	Ber. 33.52 2.81 W 21.38 Gef. 33.38 2.63 W 22.36 Molmasse 749 (dampfdruck- osmometr.)
12b	Tricarbonyldiiodo(trimethylarsan)- (triphenylphosphan)wolfram	gelb	185 – 188 (Zers.)	C ₂₄ H ₂₄ As1 ₂ O ₃ PW (904.0)	Ber. 31.89 2.68 W 20.34 Gef. 32.24 2.59 W 20.26
12 c	Tricarbonyldiiodo(trimethylstiban)- (triphenylphosphan)wolfram	gelb	116 – 120 (Zers.)	C ₂₄ H ₂₄ I ₂ O ₃ PSbW (950.8)	Ber. 30.32 2.54 W 19.34 1 26.69 Gef. 29.44 2.44 W 20.13 1 26.39
13a	Tricarbonyldiiodo(pyridin)(trimethyl- phosphan)wolfram	gelb	131 – 133 (Zers.)	C ₁₁ H ₁₄ 1 ₂ NO ₃ PW (676.9)	Ber. 19.52 2.08 N 2.07 Gef. 19.56 2.02 N 2.19 Molmasse 725 (dampfdruck- osmometr.)
13b	Tricarbonyldiiodo(pyridin)(trimethyl- arsan)wolfram	gelb	110 - 115 (Zers.)	C ₁₁ H ₁₄ AsI ₂ NO ₃ W (720.8)	Ber. 18.33 1.96 N 1.94 Gef. 18.43 1.97 N 1.92 Molmasse 710 (dampdruck- osmometr.)
13c	Tricarbonyldiiodo(pyridin)(trimethyl- stiban)wolfram	gelb	118–120 (Zers.)	C ₁₁ H ₁₄ I ₂ NO ₃ SbW (767.7)	Ber. 17.21 1.83 N 1.82 Gef. 16.92 1.84 N 1.46
14	Tricarbonyldiiodobis(trimethylarsan)- molybdän	orange	147 - 148 (Zers.)	C ₉ H ₁₈ As ₂ I ₂ MoO ₃ (673.8)	Ber. 16.04 2.69 Mo 14.24 Gef. 16.27 2.68 Mo 14.33 Molmasse 651 (dampfdruck- osmometr.)
15	Dibromotricarbonylbis(trimethylarsan)- molybdän	orange	128 – 130 (Zers.)	C9H18A52Br2MoO3 (579.8)	Ber. 18.64 3.13 Cl 27.56 Gef. 18.33 3.06 Cl 27.56 Molmasse 596 (dampfdruck- osmometr.)
16	Tricarbonyldichlorobis(trimethylarsan)- molybdän	gelb	102-104 (Zers.)	C ₉ H ₁₈ As ₂ Cl ₂ MoO ₃ (490.9)	Ber. 22.04 3.70 Mo 19.54 Cl 14.44 Gef. 22.73 3.89 Mo 19.59 Cl 14.31

direkt in ihren Reaktionslösungen eingesetzt. Nach Ablauf der Reaktionszeit wurde die Lösung filtriert, dann bei 20°C i. Vak. auf 2-5 ml eingeengt, mit Kohlenmonoxid gesättigt, mit 1-2 ml Hexan versetzt und zur Kristallisation auf etwa 0 bis -10°C gekühlt. Das Produkt wurde im Falle mangelhafter Reinheit aus etwa 1 ml Hexan und 2-3 ml Benzol umkristallisiert, die Mutterlauge dekantiert und die verbliebenen Kristalle mit 2-5 ml Hexan gewaschen. Zur weiteren Reinigung wurden die Komplexe i. Hochvak. oder i. Vak. in der genannten Trocknungsdauer von flüchtigen Bestandteilen befreit.

A-2: Die nach Variante A-1 erhaltene Reaktionslösung wurde mit Kohlenmonoxid verblasen und die verbliebenen Kristalle mit 1-2 ml Hexan gewaschen. Die empfindlichen Substanzen wurden danach 10 min i. Vak. getrocknet und bei 0°C gelagert.

B: Die Komplexe 2 wurden in dem angegebenen Lösungsmittel bei 20°C mit der Lewis-Base L versetzt. Dabei wurden 2b und 2c jeweils frisch hergestellt. Nach ihrer vollständigen Umsetzung wurde die Reaktionslösung filtriert und i. Vak. zur Kristallisation eingeengt. Die Mutterlauge wurde dekantiert und die Kristalle mit 2-5 ml Hexan gewaschen. Zur weiteren Reinigung wurden sie i. Hochvak. getrocknet.

C: Die angegebenen Mengen der Metallcarbonyle $M(CO)_6$ und der Dihalogenide Me_3EHal_2 wurden in der genannten Menge Benzol unter gutem Rühren bei 40°C mit UV-Licht bestrahlt. Nach der beendeten CO-Gas-Entwicklung wurde die Reaktionslösung i. Vak. auf $\frac{1}{3}$ ihres Volumens eingeengt, mit CO-Gas gesättigt und mit der gleichen Menge an Hexan aufgefüllt. Der gebildete Niederschlag wurde abfiltriert und nach der Entfernung von $M(CO)_6$ (M = Mo, W) bei 40°C i. Hochvak. mit 5 – 10 ml Benzol gewaschen. Das verbliebene 1 bzw. 2 wurde i. Hochvak. getrocknet. Das Filtrat wurde i. Vak. zur Trockne eingeengt und die zurückgebliebene Substanz i. Hochvak. von $M(CO)_6$ befreit. Durch Umkristallisieren aus 2 – 5 ml Benzol und 5 – 10 ml Hexan wurde aus diesem Rückstand der Komplex des Typs C gewonnen und i. Hochvak. getrocknet.

Versuche zur CO-Abspaltung

a) Jeweils 50 mg der Komplexe 7a - f wurden i. Hochvak. im Verlauf von 2 h auf 120 °C erhitzt. Die Rückstände wurden mit 50 ml Benzol extrahiert. Aus dem Extrakt verblieben 20 – 30 mg eines gelben Pulvers. IR-Spektren davon in Cyclohexan zeigten stets das Vorhandensein von 7a - f neben den vorwiegend auftretenden Banden von 17a - f. Wurde in diese Lösungen 2 h ein langsamer CO-Strom eingeleitet, trat weitgehende Rückumwandlung in 7a - f ein.

b) Jeweils 50 mg von 8c, 9c, 14 oder 15 in 10 ml Benzol wurden auf 60 °C erhitzt und ihre von Niederschlagsbildung begleitete Zersetzung IR-spektroskopisch verfolgt. Das weitgehende Verschwinden der eingesetzten Komplexe zugunsten der Dicarbonylkomplexe dauerte etwa 1 d, bei 15 4 d. Versuche, die Dicarbonylkomplexe durch Kristallisation oder Chromatographie von den Ausgangskomplexen zu trennen, waren erfolglos.

c) Jeweils 50 mg von 7c, 8c, 9c, 14 und 15 in 10 ml Benzol in einem Schlenkrohr wurden aus 30 cm Entfernung unter Wasserkühlung bestrahlt. Es bildeten sich unlösliche Niederschläge, und in Lösung traten die Dicarbonylkomplexe auf. Die Zeit bis zum weitgehenden Verbrauch der Ausgangskomplexe betrug bei 7c, 14 und 15 etwa 1 h, bei 8c und 9c etwa 3 h. Das Ausmaß der Zersetzung war geringer als bei den thermischen CO-Abspaltungen. Die Dicarbonylkomplexe konnten nur als nicht analysenreine gelbe Pulver isoliert werden.

Di-µ-chloro-bis[dicarbonylchlorobis(trimethylarsan)molybdän] (22)

a) Wurde bei der oben (vgl. Tab. 2) beschriebenen Synthese von 16 bei einem leichten Unterdruck gearbeitet und bei der Aufarbeitung auf das Einleiten von CO verzichtet, so wurden bei sonst gleicher Ansatzgröße und Aufarbeitung 0.17 g (18%) gelbes 22 vom Schmp. 128 - 130 °C (Zers.) erhalten.

b) 0.30 g (0.61 mmol) 16 in 50 ml Benzol wurden unter Wasserkühlung aus 30 cm Entfernung 2 h bestrahlt. Nach Filtration wurde i. Vak. zur Trockne eingeengt und aus Benzol/Hexan (1:2) umkristallisiert. Ausb. 0.21 g (70%) 22.

 $C_{16}H_{36}As_4Cl_4Mo_2O_4$ (925.9) Ber. C 20.76 H 3.92 Cl 15.32 Mo 20.73 Gef. C 21.60 H 4.20 Cl 14.59 Mo 21.07

Trimethylammonium-dicarbonyltrichlorobis(trimethylarsan)molybdat(-1) (23): 0.04 g (0.09 mmol) 22 und 0.01 g (0.10 mmol) Trimethylammonium-chlorid wurden in 6 ml Ethanol bei 20 °C 1 h gerührt. Die Reaktionslösung wurde mit einem Stickstoffstrom langsam bis auf 1 ml eingeengt, wobei gelbe Kristalle gebildet wurden. Diese wurden durch Dekantieren der Mutterlauge abgetrennt und mit 2 ml Cyclohexan gewaschen. Nach Trocknen i. Hochvak. verblieben 0.03 g (60%) 23, das sich, ohne zu schmelzen, ab 140 °C zersetzt.

 $\begin{array}{c} C_{11}H_{28}As_2Cl_3MoNO_2 \ (558.5) & \mbox{Ber. C } 23.66 \ \mbox{H } 5.05 \ \ Cl \ 19.04 \ \ N \ 2.51 \\ & \mbox{Gef. C } 23.88 \ \ \mbox{H } 5.34 \ \ \ Cl \ 19.06 \ \ \ N \ 2.36 \end{array}$

l-Methylpyridinium-tricarbonyltriiodo(trimethylphosphan)wolframat(-1) (24): 0.19 g (0.30 mmol) **3a** und 0.07 g (0.30 mmol) **1**-Methylpyridinium-iodid wurden in 10 ml Benzol und 10 ml THF bei 20°C 1 h gerührt. Die Reaktionslösung wurde dann zur Kristallisation auf 5 ml i. Vak. eingeengt. Die Mutterlauge wurde von den gebildeten Kristallen abgesaugt und diese zur Reinigung mit 2 ml Benzol gewaschen und i. Hochvak. getrocknet. Dabei fielen 0.17 g (69%) **24** als gelbe Kristalle vom Schmp. 152-155°C an.

C12H17I3NO3PW (818.8) Ber. C 17.60 H 2.09 N 1.71 Gef. C 17.43 H 1.99 N 1.82

Dicarbonyldiiodotris(trimethylphosphan)molybdän (25a): 1.85 g (2.00 mmol) 1a und 0.70 g (9.17 mmol) Trimethylphosphan wurden in 20 ml Benzol bei 20 °C 2 h gerührt. Die Reaktionslösung wurde i. Vak. zur Trockne eingeengt, der Rückstand mit 10 ml Hexan gewaschen und aus 5 ml Benzol kristallisiert. Nach Trocknen der Kristalle i. Hochvak. Ausb. 1.57 g (62%) 25a, gelbe Kristalle vom Schmp. 207 – 209 °C.

 $C_{11}H_{27}I_2MoO_2P_3$ (634.0) Ber. C 20.84 H 4.29 Mo 15.13 Gef. C 20.80 H 4.34 Mo 15.52

Dibromodicarbonyltris(trimethylphosphan)molybdän (25b): 0.37 g (0.50 mmol) 1b und 0.30 g (4.00 mmol) Trimethylphosphan wurden in 10 ml Chloroform 2 h gerührt. Nach der Aufarbeitung der Reaktionslösung wie für 25a wurden 0.09 g (17%) 25b als gelbe Kristalle vom Schmp. 193 – 196 °C erhalten.

 $C_{11}H_{27}Br_2MoO_2P_3$ (540.0) Ber. C 24.47 H 5.04 Br 29.60 Mo 17.77 Gef. C 25.04 H 5.23 Br 30.16 Mo 18.45

Dicarbonyldichlorotris(trimethylphosphan)molybdän (25 c)

a) 0.37 g (0.50 mmol) 1c und 0.23 g (3.00 mmol) Trimethylphosphan wurden in 10 ml Chloroform bei 20 °C 2 h gerührt. Nach Aufarbeiten der Reaktionslösung wie für 25a erhielt man 0.05 g (11%) 25c als gelbe, kristalline Verbindung vom Schmp. 156–158 °C.

b) 0.92 g (1.00 mmol) 22 in 50 ml Benzol wurden mit 0.60 g (8.00 mmol) PMe₃ 2 h gerührt. Nach Einengen i. Vak. wurde aus Benzol/Hexan (2:1) umkristallisiert. Ausb. 0.46 g (51%) 25 c.

 $\begin{array}{c} C_{11}H_{27}Cl_2MoO_2P_3 \ (451.1) & \mbox{Ber. C } 29.29 \ H \ 6.03 \ Cl \ 15.72 \ Mo \ 21.27 \\ & \mbox{Gef. C } 28.60 \ H \ 5.89 \ Cl \ 15.28 \ Mo \ 20.98 \end{array}$

Dicarbonyldiiodotris(trimethylphosphan)wolfram (26a): 0.26 g (0.42 mmol) 3a und 0.08 g (1.00 mmol) Trimethylphosphan wurden in 10 ml Cyclohexan 1 h gerührt. Dann wurde die Reaktionslösung i. Vak. zur Trockne eingeengt. Der verbliebene Rückstand wurde zuerst mit 5 ml Cyclohexan extrahiert und der Extrakt ebenfalls zur Trockne eingeengt. Dabei fielen 0.04 g (21%) $W(CO)_4(PMe_3)_2$ an. Danach wurde der Rückstand mit 5 ml Benzol extrahiert, der Extrakt zur

Kristallisation auf 1 ml eingeengt und auf 0°C gekühlt. Zur weiteren Kristallisation wurden danach 0.5 ml Hexan zugesetzt. Es fielen 0.11 g (36%) gelbes **26a** vom Schmp. 223 – 227 °C aus, die i. Hochvak. getrocknet wurden.

C11H27I2O2P3W (721.9) Ber. C 18.30 H 3.77 W 25.47 Gef. C 18.33 H 3.72 W 24.96

Dibromodicarbonyltris(trimethylphosphan)wolfram (26b)

a) 0.21 g (0.53 mmol) W(CO)₅PMe₃ wurden in 10 ml Hexan bei -20 °C mit 5.5 ml einer etwa 0.1 M Brom-Lösung in Tetrachlormethan zu **4a** umgesetzt. Darauf wurden der Lösung 0.39 g (5.25 mmol) Trimethylphosphan zugesetzt, 2 h bei 20 °C gerührt und die Reaktionslösung i. Vak. zur Trockne eingeengt. Der Rückstand wurde mit 2 ml Hexan gewaschen und aus 2 ml Benzol umkristallisiert. Ausb. 0.25 g (75%) gelbes **26b** vom Schmp. 211 – 217 °C.

b) 0.11 g (0.18 mmol) **8b** in 20 ml Benzol wurden mit 0.15 g (2.00 mmol) PMe_3 1 h gerührt. Aufarbeitung wie oben ergab 0.09 g (80%) **26b**.

 $C_{11}H_{27}Br_2O_2P_3W$ (627.9) Ber. C 21.04 H 4.33 Br 25.45 Gef. C 21.19 H 4.32 Br 25.41 Molmasse 638 (dampfdruckosmometr.)

Dicarbonyldichlorotris(trimethylphosphan)wolfram (26c): 0.16 g (0.17 mmol) 6b und 0.42 g (5.50 mmol) Trimethylphosphan wurden in 10 ml Benzol bei 20 °C unter CO-Atmosphäre 30 min gerührt. Die Reaktionslösung wurde dann i. Vak. zur Trockne eingeengt, der Rückstand mit 2 ml Hexan gewaschen, aus 3 ml Benzol umkristallisiert und i. Hochvak. getrocknet. Dabei fielen 0.07 g (38%) 26c als gelbe Kristalle vom Schmp. 170-172 °C an.

C11H27Cl2O2P3W (539.0) Ber. C 24.51 H 5.05 Cl 13.15 Gef. C 24.98 H 5.23 Cl 13.08

Umsetzung von **8c** mit $AsMe_3$: 0.05 g (0.07 mmol) **8c** in 10 ml Benzol wurden bei 40 °C mit 0.15 g (1.0 mmol) AsMe₃ gerührt. Auch nach 1 d war IR-spektroskopisch in Lösung nur **8c** zu identifizieren.

Versuch zur weiteren CO-Substitution durch PMe_3 an **26b**: 0.25 g (0.40 mmol) **26b** und 0.09 g (1.20 mmol) Trimethylphosphan wurden in 20 ml Toluol im Verlauf von 3 h auf 100°C erhitzt. Die Reaktionslösung wurde danach i. Vak. zur Trockne eingeengt und der ölige Rückstand in Cyclohexan aufgenommen. In der Lösung konnte IR-spektroskopisch ein Gemisch von **26b** und **8a** identifiziert werden.

- ²⁾ R. Colton und I. B. Tomkins, Aust. J. Chem. 19, 1143, 1519 (1966).
- ³⁾ M. W. Anker, R. Colton und I. B. Tomkins, Aust. J. Chem. 20, 9 (1967).
- ⁴⁾ R. Colton, Coord. Chem. Rev. 6, 269 (1971).
- ⁵⁾ M. G. B. Drew, Prog. Inorg. Chem. 23, 67 (1977).
- ⁶⁾ J. A. Bowden und R. Colton, Aust. J. Chem. 21, 2657 (1968).
- ⁷⁾ R. Colton und C. J. Rix, Aust. J. Chem. 22, 305 (1969).
- ⁸⁾ A. D. Westland und N. Muriithi, Inorg. Chem. 12, 2356 (1973).
- ⁹⁾ J. R. Moss und B. L. Shaw, J. Chem. Soc. A 1970, 595.
- ¹⁰⁾ M. G. B. Drew, I. B. Tomkins und R. Colton, Aust. J. Chem. 23, 2517 (1970).
- ¹¹⁾ D. Kepert, Prog. Inorg. Chem. 25, 41 (1979).
- 12) W. S. Tsang, D. W. Meek und A. Wojcicki, Inorg. Chem. 7, 1263 (1968).
- ¹³⁾ J. A. Bowden und R. Colton, Aust. J. Chem. 22, 905 (1969).
- 14) M. W. Anker, R. Colton und I. B. Tomkins, Rev. Pure Appl. Chem. 18, 23 (1968).
- ¹⁵⁾ E. B. Dreyer, C. T. Lam und S. J. Lippard, Inorg. Chem. 18, 1904 (1979).
- ¹⁶⁾ M. G. B. Drew und C. J. Rix, J. Organomet. Chem. 102, 467 (1975).
- ¹⁷⁾ M. G. B. Drew und J. D. Wilkins, J. Chem. Soc., Dalton Trans. 1977, 194.
- ¹⁸⁾ M. G. B. Drew und J. D. Wilkins, J. Chem. Soc., Dalton Trans. 1977, 557.
- ¹⁹⁾ R. Colton und C. J. Rix, Aust. J. Chem. 23, 441 (1970).
- ²⁰⁾ R. Müller und H. Vahrenkamp, Chem. Ber. 113, 3517 (1980).

¹⁾ I. Mitteil.: P. Umland und H. Vahrenkamp, Chem. Ber. 115, 3555 (1982), vorstehend.